On Maximal Curves Having Classical Weierstrass Gaps
نویسنده
چکیده
We study geometrical properties of maximal curves having classical Weierstrass gaps.
منابع مشابه
Weierstrass Cycles in Moduli Spaces and the Krichever Map
We analyze cohomological properties of the Krichever map and use the results to study Weierstrass cycles in moduli spaces and the tautological ring. Let us consider a point p on a smooth projective connected curve C over C of genus g. We say that a natural number n is a non-gap if there exists a function that is holomorphic on C \p and has a pole of order n at the point p (in other words h0(O(n...
متن کاملOn Isogenous Principally Polarized Abelian Surfaces
We study a relationship between two genus 2 curves whose jacobians are isogenous with kernel equal to a maximal isotropic subspace of p-torsion points with respect to the Weil pairing. For p = 3 we find an explicit relationship between the set of Weierstrass points of the two curves extending the classical results of F. Richelot (1837) and G. Humbert (1901) in the case p = 2.
متن کاملThe group of Weierstrass points of a plane quartic with at least eight hyperflexes
The group generated by the Weierstrass points of a smooth curve in its Jacobian is an intrinsic invariant of the curve. We determine this group for all smooth quartics with eight hyperflexes or more. Since Weierstrass points are closely related to moduli spaces of curves, as an application, we get bounds on both the rank and the torsion part of this group for a generic quartic having a fixed nu...
متن کاملWeierstrass Pure Gaps From a Quotient of the Hermitian Curve
In this paper, by employing the results over Kummer extensions, we give an arithmetic characterization of pure gaps at many totally ramified places over the quotients of Hermitian curves, including the well-studied Hermitian curves as special cases. The cardinality of these pure gaps is explicitly investigated. In particular, the numbers of gaps and pure gaps at a pair of distinct places are de...
متن کاملThe average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point
We prove that when all hyperelliptic curves of genus n ≥ 1 having a rational Weierstrass point are ordered by height, the average size of the 2-Selmer group of their Jacobians is equal to 3. It follows that (the limsup of) the average rank of the Mordell-Weil group of their Jacobians is at most 3/2. The method of Chabauty can then be used to obtain an effective bound on the number of rational p...
متن کامل